Домой на автопилоте. Как летает самолет: автопилот против живого пилота Кто управляет самолетом пилот или автопилот

Зарождение авиастроения много чего изменило в конструкции самолетов и их управлении. Еще 20-30 лет назад такой прибор, как автопилот, был неизвестен практически никому. За эти годы ситуация в корне изменилась. Большую часть полета управление огромными пассажирскими авиалайнерами осуществляют именно автопилоты. Можно сказать, что пилот активно участвует только на рулении и взлете, после чего передает управление системе. Также нужно вмешательство пилота при посадке судна. Бортовой компьютер самолетов значительно упрощает задачи в управлении и контроле.

Пилоты современных моделей «Эйрбаса» часто шутят, что для управления новыми моделями пассажирских лайнеров достаточно собаки и одного человека. Собака необходима, чтобы кусать пилота, чтобы тот не тянулся к рычагам и кнопкам управления, а человек нужен для того, чтобы кормить пса. Конечно же, это шутка, которая появилась за счет современных систем управления, таких как fly-by-wire, иными словами, это радиодистанционное управление аппаратом. Оно позволяет обеспечить передачу сигналов от самого пилота к механизмам лайнера в виде электрических сигналов. Это значит, что вместо использования старой гидравлики пилоты осуществляют управление, посылая сигналы через компьютер к отдельным механизмам машины.

Что же такое автопилот в широком понимании данного термина? Это программно-аппаратная система, которая имеет возможность вести транспортное средство по заданному маршруту. С каждым годом инноваций становится все больше во многих отраслях транспортного строения. Все же лидирующие позиции занимает воздушный транспорт.

Автопилот самолета создан для стабилизации всех параметров полета судна и ведения по заданному курсу. При этом соблюдается установленная пилотом скорость и высота полета. Перед тем как переводить летательный аппарат на режим автопилота, необходимо создать четкий полет без скольжения или завала машины. После стабилизации самолета по всем плоскостям можно производить включение системы автоматического управления, но при этом необходимо проводить регулярный контроль показателей. Стоит отметить, что и военные самолеты имеют такие системы.

Более сложные в своей конструкции и надежные автопилоты начали устанавливаться на отечественные самолеты с конца 70-х годов.

Краткая история создания автопилота

Первый автопилот в мире был создан еще в далеком 1912 году. Изобретение принадлежит американской компании Sperry Corporation, которая смогла создать систему, удерживающую самолет на заданной траектории, при этом стабилизируя крен. Это было достигнуто за счет связи высотометра и компаса с рулями направления и высоты. Связь была настроена за счет использования блока и гидравлического привода.

На схеме показано, как работает типичный автопилот.

Заранее рассчитанные параметры полета вводятся в компьютеры самолета (1).

После взлета автопилот вступает в действие.

Два дисплея(2)показывают положение самолета, его предполагаемый маршрут и высоту.

Изменение положения маленьких заслонок(3) на наружной поверхности самолета оповещает компьютеры о малейшем изменении в ориентации самолета.

Для определения положения используется глобальная система навигации (ГСН) (4).

Приемник расположен на верхней части корпуса (5).

Компьютеры следят за маршрутом и автоматические производят необходимые изменения посредством сервомеханизмов (6),

которые управляют рулем (7),

рулями высоты (8),

элеронами (9),

закрылками (10)

и настройкой дросселей двигателей (11)

При необходимости пилот может в любой момент отключить автопилот и перейти к ручному управлению (12)

Начиная с 30-х годов 20 века, автопилотами начали оснащать некоторые пассажирские авиалайнеры. Новый виток в развитие автоматических систем управления внесла Вторая мировая война, которая требовала подобных технологий для дальних бомбардировщиков. Впервые полностью автоматический полет через Атлантику, включая посадку и взлет, осуществил самолет C-54, принадлежавший США. Это произошло в 1947 году.

Современный этап развития автоматизированных систем управления самолетами достиг качественно нового уровня. На сегодняшний день лайнеры комплектуются системами ВБСУ или САУ. Система автоматического управления «САУ» осуществляет качественную стабилизацию судна на маршруте и в пространстве. Совокупность агрегатов системы позволяет управлять аппаратом на всех этапах полета. Самые современные разработки позволяют осуществлять полет в так называемом штурвальном режиме, это позволяет максимально облегчить работу пилота, минимизировать его вмешательство. Такие системы самостоятельно стабилизируют самолет от сноса, скольжения или болтанки, могут переходить даже на критические режимы полета, при этом очень часто игнорируя действия пилотов.

Автопилот самолета ведет аппарат по заданному маршруту, при этом используется комплексная информация навигационных приборов собственных и наземных датчиков, которые проводят анализ полета. Данная система проводит управление всеми агрегатами летательного судна. Также работают траекторные системы, которые проводят заход на посадку с высокими показателями точности без каких-либо действий пилотов.

Управляющие устройства в стандартном их виде (рычаги, педали) практически не используются. Высокая степень автоматизации довела управление до подачи электрических импульсов ко всем частям самолетов без применения гидравлики в системе управления. Электромеханические приборы управления позволяют воссоздать более привычные условия пилотам. В кабинах пилотов все чаще устанавливаются боковые рычаги управления по типу «сайдстик».

Проблемы автоматического управления самолетами

Конечно же, первоочередной и самой главной проблемой при создании автопилотов является сохранение безопасности полета. В большинстве старых автоматических систем управления пилот имеет возможность в любое время произвести срочное отключение автопилота и перейти на ручное управление. При нарушении или поломке автопилота крайне необходимо отключение системы обычным способом или механическим. В аппарате Ту-134 возможно проведение «отстрела» автопилота установленным пиропатроном. При разработке автопилота тщательно продумываются варианты его отключения в случае поломки без вреда для полета.

Для повышения безопасности автоматика управления работает в многоканальном режиме. Параллельно могут работать сразу четыре системы пилотирования с одинаковыми параметрами и возможностями. Также система проводит постоянный анализ и мониторинг входящих информационных сигналов. Полет осуществляется на основе так называемого метода кворумирования, который состоит из принятия решения по данным большинства систем.

В случае поломки автопилот способен самостоятельно выбрать дальнейший режим управления. Это может быть переключение на другой канал управления или передача управления пилоту. Для проверки работы систем необходимо проводить так называемый предполетный прогон систем. Данный тест состоит из запуска пошаговой программы, которая подает имитацию сигналов полета.

Все же ни одна проверка не позволяет достичь 100%-й гарантии безопасности и работы в полете. Из-за нестандартных ситуаций в воздухе могут возникать дополнительные проблемы с автоматикой управления. Некоторые автопилоты имеют различные программы, которые позволяют наиболее безопасно проводить полет соответствующего авиалайнера.

Все же полет на одном автопилоте без человеческого фактора очень опасен и практически невозможен. Можно сделать один логический вывод, что чем «умнее» самолет и сложнее его конструкция, тем меньше шансов на полет без человеческого вмешательства. Чем больше новых автоматизированных систем используется, тем значительнее возрастают шансы на их отказ в полете. Просчитать все варианты отказа практически невозможно. Именно поэтому навыки пилота останутся востребованными постоянно, поскольку каждый летчик проходит очень большой путь к управлению пассажирскими лайнерами. Соответственно, навыки и быстрое принятие решений остаются более важными, нежели действия компьютерных программ.

Самые современные системы автоматического управления типа fly-by-wire позволили значительно снизить общую массу конструкции самолета. При этом надежность бортовых систем возросла в разы. Оборудование реагирует без промедлений, а также способно исправлять ошибки, вызванные человеческим фактором при управлении. Это говорит о том, что система не позволит пилоту завести машину в опасную для нее и пассажиров на борту ситуацию. Современные самолеты типа Airbus перестали комплектоваться стандартными рычагами и педалями управления, вместо этого устанавливаются джойстики. Все это позволяет пилотам не задумываться над тем, какую команду и как необходимо передать отдельному агрегату. Не нужно продумывать угол отклонения элеронов или закрылок, достаточно наклонить джойстик управления – и компьютер сделает все сам.

Все же, несмотря на всю радужную картину, по вине автопилотов произошло немало крушений и аварий, которые привели к человеческим жертвам. История авиакатастроф по вине автоматических систем управления, к сожалению, очень богата фактами ненадежности таких систем.

Автопилоты расслабляют лётчиков гражданской авиации, жалуются в профильном американском федеральном управлении. Не пора ли отказаться от бездумной опоры на железного друга?

Первые опыты полёта и посадки "под колпаком" проводились в 1930-х. С тех пор автопилоты продвинулись чрезвычайно далеко, и часто, если метеоусловия позволяют, полёт и вовсе можно целиком переложить на их плечи. Откуда, собственно говоря, и технология автономных БПЛА, буйно расцветшая в последние десятилетия.

Однако есть проблема: самолётами управляют не только компьютеры, но и пилоты. Почему это происходит? Воздух не земля: если машины двигаются в основном вдоль дорог, оснащённых знаками и прочими ПДД, то полёты даже самой обычной гражданской авиации иной раз напоминают езду по бездорожью, одновременно по грязи и снегу. Только вот непролазная грязь, снег (грозовой фронт и иные погодные чудеса) и прочее "отсутствие дорог" могут возникнуть в любой момент и на любом участке маршрута. Отдельную строку в этот стон вносят аэропорты.

Для взаимодействия со столь сложными и непредсказуемыми факторами, как грозы, авиадиспетчеры и прочее, компьютеры делать пока никто не умеет, что заставляет всегда держать на борту пассажирского авиалайнера человека.

В то же время в большинстве простых условий автопилот его легко подменяет, что... заставляет человека расслабляться. Федеральное управление гражданской авиации США выпустило недавно доклад, часть которого попала в прессу.

И из него следует, что по итогам 9 тысяч недавних полётов, по которым имелась подробная информация о происходящем в кабинах пилотов, многие из них "с большой неохотой вмешиваются" в работу автоматизированных систем управления летательным аппаратом. Ещё более сдержанно они относятся к отключению автопилотов и переходу на ручное управление в опасных ситуациях.

Помимо нехватки собственного опыта управления вручную, отмечает доклад, в этом виновата плохая подготовка лётного состава: при его обучении именно таким компонентам программы часто уделяется недостаточно внимания. Не лучше и последствия того, казалось бы, позитивного факта, что системы автоматизированного управления полётами быстро развиваются: знания пилотов о них пополняются не столь быстро, что может привести к неполному пониманию человеком всех возможностей и особенностей той системы, которой он управляет.

Особенно тревожит то, что часто, не успев вовремя перевести управление самолётом в ручной режим, лётчики допускают потерю скорости ниже порога сваливания, то есть, по сути, позволяют свои судам летать слишком медленно. Результаты очевидны: такие самолёты падают. На землю.

Системы, отвечающие за автоматическое поддержание оптимального угла, под которым крыло встречается с набегающим потоком, иногда создают условия, когда пилот, не имеющий должных навыков, просто не может адекватно выдерживать этот угол, если устройство по каким-то причинам не срабатывает.

Многие положения доклада трудно назвать новыми. Скажем, в катастрофе над Боденским озером винили Систему предупреждения столкновения самолётов в воздухе (TCAS). Потом выяснилось, что в действительности ошибся диспетчер, а пилоты послушались его, а не TCAS, но кто бы ни был виноват в катастрофах - автоматика или неумение работать с ней, - меры по улучшению взаимодействия пилотов с постоянно меняющимся системами автоматизированного управления жизненно необходимы.

Отдельного упоминания заслуживает ошибка "Я думал, что она работает". В нынешнем июле пилоты рейса Asiana Airlines, находясь над Сан-Франциско (США), думали, что автомат тяги запрограммирован на поддержание скорости 254 км/ч, в то время как просто забыли его включить. В итоге за газом никто не следил, и скорость упала до такой, когда самолёт влетел в землю.

Есть ли выход изо всех этих "забыл включить", "не отреагировал на подсказки TCAS", "не следил за тягой/высотой/скоростью"? Вновь переходить на ручное управление глупо.

"Продвинутая автоматика сделала полёты значительно безопаснее, так что мы не должны выплёскивать с водой и ребёнка", - считает Мэри Каммингс, экс-пилот авиации ВМС США, а ныне просто разработчик систем автоматизации полётов.

Любой, кто припомнит частоту катастроф в авиации полувековой давности, согласится: погибнуть в авиарейсе после массового внедрения автопилотов (а именно они управляют самолетом 95% времени) стало несравнимо труднее, чем на земле. Достаточно сказать, что нынешнее число погибших по этой причине находится на уровне показателей 1940-х годов, когда летавших людей было на порядки меньше.

Во многом впечатление о некоей особой аварийности авиатранспорта - это следствие "эффекта Гинденбурга": фактически выживаемость пассажиров дирижаблей в 30-е была выше, чем у пассажиров ЛА тяжелее воздуха.

Однако крупные размеры воздушных кораблей вели к тому, что даже одна авария производила исключительное впечатление на публику (газеты, "шок, видео"), создав в итоге мнение о дирижаблях как об опасном транспорте. Сегодня самолёты достигли вместимости дирижаблей прошлого, из-за чего общественность снова нервничает. Ну и, конечно, растёт интенсивность пассажирских авиаперевозок, что автоматически увеличивает вероятность гибели в воздухе.

Совершенно бесполезно винить людей в том, что они боятся самолётов, "от которых" в среднем гибнет менее 1200 человек в год, при этом добровольно доверяя свои жизни личным автомобилям, убивающим в тот же срок 1,2 млн человек. Общественное мнение в принципе не поддаётся рациональным аргументам, так что в воздухе может гибнуть хоть в тысячу, хоть в миллион раз меньше, чем на дорогах, - и это всё равно никого не убедит.

Но что же делать с самими перевозками, каким должно быть основное направление усилий по повышению их безопасности? Та же Каммингс категорична: только работа над автоматикой и пилотами способна улучшить ситуацию.

"Программы тренировки пилотов могут быть улучшены. Но, возможно, самым большим практическим шагом будет повышение надёжности самих автоматических систем", - уточняет она.

Судя по динамике их развития в последние полвека, это, вероятно, действительно самое лучшее, что мы можем сделать для безопасности полётов.

Подготовлено по материалам NewScientist.

Как-то у Ричарда Бренсона, основателя Virgin Airlines, спросили:
- Вы все время экономите на всем. Что дальше – вы посадите в кабину одного пилота вместо двух?
- Дальше мы вообще уберем из кабины пилотов.


«Да что там сложного, включил автопилот – и спи». Это любимый аргумент диванной гвардии в разговорах об авиации, после которого неизбежно следует глубокое умозаключение «непонятно, за что им такие деньги платят». А может, и правда полет на самолете такая простая штука, что нет никакого смысла проходить долгое и сложное обучение на пилота самолета , досконально разбираться, как летает самолет , постоянно подтверждать квалификацию, учить английский и трястись от страха накануне ВЛЭК, раз уж кабина современного авиалайнера оборудована волшебной кнопкой «автопилот»?

Автопилотом управляет пилот

Дл начала придется осознать, что волшебной кнопки нет. Вместо нее – целая панель датчиков, тумблеров, переключателей, лампочек и километры проводов, соединяющих все это хозяйство с узлами и агрегатами самолета. Без участия человека они таки останутся стеклом, пластиком и металлом. Поэтому управляет автопилотом пилот. Как бы странно это не звучало.

Но прежде чем нажать заветную кнопку, нужно как минимум рассчитать количество топлива с учетом числа пассажиров, груза, погоды, возможности уйти на запасной аэродром «если что», узнать, где вообще есть такие аэродромы на всем протяжении полета, и постоянно держать их в голове, убедиться в работоспособности всех систем, запросить у диспетчера разрешение на руление (а в загруженных международных аэропортах на рулежках пробки порой похлеще городских), докатиться до полосы, еще раз все перепроверить, взлететь, держа в голове необходимость в любой момент немедленно прекратить взлет, набрать высоту и только после этого, заняв эшелон, может быть, перевести управление самолетом в автоматический режим. Это, если погода идеальна и нет необходимости обходить грозовые облака, что бывает довольно редко.

«Полет на самолете в автоматическом режиме» в данном случае будет означать, что пилот выставил определенные значения скорости и высоты. Если условия поменяются, и высоту необходимо будет сменить, автопилот об этом сам не узнает. Мало того, современный автопилот имеет несколько режимов работы, и разные команды пилота не должны противоречить друг другу. Можно, например, задать высоту 10000 футов, но включить режим снижения, и самолет послушно полетит вниз. Он, конечно, будет истошно верещать и пищать, но сам ничего не предпримет, потому что набор лампочек, кнопочек и проводов не знает, как летает самолет .

При грамотном обращении автопилот существенно облегчает жизнь экипажа, беря на себя рутинную часть работы, но высокую зарплаты летчики получают точно не за это. Это все равно, что обижаться на журналистов, что они пишут тексты на компьютере, а не гусиным пером.

Про гусиные перья или почему пилот самолета будет всегда необходим

В книге советского писателя и летчика-истребителя Анатолия Маркуши есть замечательная сцена. Девушка пеняет своему молодому человеку, что он выбрал неправильную профессию, так как пилоты скоро станут не нужны.

Это было более полувека назад. Телевидение, к слову, грозившееся «убить» театр и кино, изобрели позже автопилота, а искусство Мельпомены все живет и живет. Что уж говорить про такую тонкую материю как полет на самолете.

Первый автопилот был разработан американской корпорацией Sperry Corporation аж в 1912 году. А в 30-е годы уже многие пассажирские лайнеры оборудовались системами, позволяющими автоматически удерживать курс и выравнивать крен относительно земли.
В 1947 году Douglas C-54 ВВС США перелетел через Атлантику в полностью автоматическом режиме, включая взлет и посадку.

Как ни странно, но если в других сферах техническое совершенство способствует прогрессу, в авиации пока все наоборот. Чем сложнее, больше, комфортнее и «умнее» самолет, тем меньше шансов, что когда-нибудь он полетит сам. Чем технологичней начинка, тем выше вероятность отказа каждой ее составляющей, а чем больше такой начинки, тем больше возможных комбинаций отказов, просчитать которые не в состоянии ни один компьютер.

Вот почему грамотный пилот самолета, обученный пилотированию «на руках», последовательно прошедший все этапы подготовки – от маленькой Цессны до авиалайнера – будет востребованы всегда.

«Взлет опасен, полет прекрасен, посадка трудна»

Это еще Михаил Громов – тот самый, который в 1937 году в компании с Юмашевым совершил беспосадочный перелет Москва – Северный полюс – США - говорил. Даже далекие от авиации люди, не осознавая толком, как летает самолет , понимают, что просто так с высоты 10 тысяч метров он не упадет. Чаще всего авиакатастрофы случаются на взлете и посадке. То есть той части полета, справляться с которой автопилот пока не очень умеет.

Да, уже давно созданы системы, способные поднимать и сажать самолет в полностью автоматическом режиме, но надо понимать, что такие самолеты требуют практически лабораторных условий. Во-первых, идеальная погода – ветер не более 10 м/с, никакого дождя, льда, снега или грозы. Во-вторых, аэропорт, оборудованный так называемой ILS (Instrumental Landing System) – системой автоматического захода на посадку.

Грубо говоря, это совокупность маяков и датчиков, с помощью которой полет на самолете может осуществляться буквально вслепую. Позволить себе такое оборудование могут только очень крупные международные хабы в развитых странах. С другой стороны, в развитые страны обычно очень много желающих прилететь, а чем больше в воздухе самолетов в единицу времени, тем выше вероятность сбоя системы ILS из-за перегруженного всевозможными радиоволнами и датчиками пространства. Замкнутый круг.
Тем не менее, разговоры о том, что скоро автоматика вытеснит из кабины живых пилотов, не умолкают.

5 причин, почему в обозримом будущем этого точно не произойдет

- Отсутствие необходимой инфраструктуры. Посадка на автопилоте при нулевой горизонтальной и вертикальной видимости (например, в плотный туман) разрешается только в аэропортах, сертифицированных по III категории ИКАО. Сертификация эта не то чтобы сложно реализуемая технически, но очень дорогая. Вкладывать такие деньги в полтора километра бетонки, построенные еще английскими колонизаторами (либо розовощекими строителями коммунизма, в зависимости от географии) экономически не выгодно. А экономика в современной авиации решает если не все, то многое.

Радиообмен. На протяжении всего маршрута борт сопровождают авиадиспетчеры на земле. А земля большая и разная. Принято считать, что универсальным языком в авиации считается английский, но любой пилот с опытом международных полетов скажет, что в каждой стране он свой. Классикой жанра в этом плане считается «китайский английский», разобрать который с непривычки практически невозможно. Машина с подобным точно не справится, а вот человек умеет приспосабливаться ко всему.

Интуиция умноженная на опыт. Авиастроители в комплект к самолету всегда прилагают руководство по эксплуатации и карты действий в аварийных ситуациях. Так вот, двойные (тройные и т.д.) отказы в них не предусмотрены. Точнее предусмотрены, но с формулировкой «экипаж сам определяет последовательность действий, исходя из своего опыта, знаний и сложившейся обстановки». У автопилота своих знаний нет, а компьютер, который мог бы просчитать все комбинации ситуаций, если и возможен в теории, то в жизни будет весить как три самолета.

Дороговизна. Та же кофеварка, что в магазине «Все для дома» стоит сотню долларов, на борту бизнес-джета будет стоить тысяч десять. Не потому что «крутизна дороже денег», а потому что она обязана соответствовать международным требованиям безопасности для бортового оборудования. Что уж говорить про оборудование, которое отвечает за жизнь пассажиров? Тарифы на авиабилеты при этом будут такими, что гражданская авиация потеряет вообще весь смысл своего существования.

Психология пассажиров. Это самое простое и самое сложное одновременно. Много найдется в мире людей, готовых отдать свои кровные за полет на самолете без пилота? Особенно, если билет этот стоит дороже, чем экспедиция на МКС?

Мечтать приятно, а фантазировать легко. Возможно, когда-нибудь человечество и достигнет такого расцвета, что воспитает искусственный интеллект и построит совершенную ILS-инфраструктуру в самых отдаленных уголках Земли. А пока у нас даже газ с канализацией не везде есть, качественно подготовленный пилот самолета , обучение которого проходило в приближенных к земным реалиях условиях – с живыми примерами, в разных погодных условиях, с необходимостью мгновенно принимать решения головой, а не автопилотом, работу всегда найдет. По крайне мере на ближайшие 100-200 лет.

Входя в самолет, любой пассажир посмотрит не только направо, но и налево. Иногда дверь в кабину пилотов оказывается открыта и мы видим как сложно устроено все внутри. Мы объясним, что значат главные рычаги, тумблеры и панели.

1. Пространственное положение самолета

На экране отображается тангаж - движение самолета в продольном канале. Проще говоря, тангаж - подъем носа или хвоста самолета. Также здесь виден крен самолета в поперечном канале, то есть подъем правого или левого крыла

2. Навигационный дисплей

Напоминает традиционный автомобильный навигатор. Как и в машине, здесь отображаются данные о месте назначения, местоположение на настоящий момент, какое расстояние самолет уже пролетел и какое предстоит

3. Дублирующий прибор пространственного положения самолета и навигации

4. Часы

5. Бортовой компьютер

Перед полетом пилоты вручную заносят в него данные: откуда и куда летим, массу, центровку, скорости на взлете, ветер по маршруту. Компьютер считает нам необходимое топливо на полет, остаток топлива, время полета...

6. Ручка выпуска и уборки шасси

7. Сайдстик

Ручка управления самолетом, заменяет штурвал

8. Кнопка отключения автопилота

9. Педали торможения

Для торможения в самолете используются две педали. Работают они раздельно. Интенсивность торможения зависит от силы обжатия педали: чем сильнее нажимаем, тем быстрее тормозит

10. Противопожарная система

В случае возникновения пожара загораются индикаторы. Мы видим, в какой части судна очаг возгорания, и включаем автоматизированный режим пожаротушения. Ручные огнетушители находятся в кабине и в салоне

11. Кнопки включения топливных насосов

12. Ручка открытия окна

13. Автопилот

Для автопилота необходимы данные, которые мы занесли в бортовой компьютер. Автопилот включаем после взлета, когда самолет набрал необходимую высоту. Посадка на автопилоте используется в особых случаях, например в тумане

14. Рычаг управления двигателем

Это то же самое, что и педаль газа в автомобиле. С его помощью управляем тягой двигателя

15. Тумблер управления спойлерами

Спойлеры - откидные щитки на верхней плоскости крыла. Они - воздушный тормоз. Часто необходимо снизить скорость в воздухе, особенно при посадке. В этом случае выпускаем спойлеры. Они создают дополнительное сопротивление, и скорость самолета падает

16. Ручка управления закрылками

Закрылки - отклоняемые поверхности, расположенные на задней кромке крыла. Выпускаем их при взлете для увеличения площади крыла, а соответственно, и подъемной силы самолета. Набрав необходимую высоту, закрылки убираем

17. Кнопки включения аккумуляторных батарей

18. Кнопки управления температурой воздуха в кабине и салоне самолета

19. Планшетный компьютер

В нем находятся сборники схем аэропортов и карт разных стран. Также на экран можно вывести картинку с видеокамер, установленных в салоне самолета

20. Панель управления самолетом

Здесь расположены кнопки включения автомата тяги, переключатели выбора навигационных средств, ручки задатчика курса, скорости. Действуя на них, мы даем команды автопилоту на управление самолетом

Фото: Максим Авдеев, Василий Кузнецов

Понравилась статья? Поделиться с друзьями: