Силы, действующие на корпус судна. Внешние силы, действующие на судно Силы и моменты, связанные с воздействием ветра

Силы, действующие на судно в процессе управления и маневрирования.

Свойства крыла

Свойства крыла применительно к корпусу судна следующие. Корпус судна в подводной и надводной частях представляет удли­ненное тело, симметричное относительно ДП, т. е. подобен верти­кальному крылу симметричного профиля.

Теория крыла, рассматриваемая в гидромеханике судна, поз­воляет определить характер распределения аэро- и гидродина­мических воздействий на корпус при его движении на границе двух сред и найти величину, направление и точку приложения равнодействующих этих сил, а значит аэро- и гидродинамические моменты относительно вертикальной оси. Эти данные в сочетании с силами и моментами, приложенными к корпусу со стороны средств управления, определяют поступательное и угловое движе­ние судна данной массы.

Теоретические расчеты сил и моментов, возникающих на кор­пусе судна, сложны и трудоемки, поэтому не всегда могут исполь­зоваться при практическом маневрировании. Тем не менее, суще­ствуют общие закономерности, знание которых имеет большое значение для правильной оценки и предсказания поведения судна как объекта управления.

Для получения этих закономерностей рассмотрим основные свойства крыла применительно к корпусу судна.

    Если крыло перемещается прямолинейно в потоке воды или воздуха под некоторым углом атаки, то, помимо силы лобового сопротивления, направленной противоположно движению, возни­кает также подъемная сила, направленная перпендикулярно набе­гающему потоку. Величина подъемной силы в первом приближе­нии пропорциональна углу атаки. Она может существенно превышать силу лобового сопротивления, в связи с чем равнодей­ствующая этих сил не совпадает с направлением потока, а откло­нена в сторону траверзного направления.

    Точка приложения равнодействующей силы смещена по ДП от центра площади крыла навстречу потоку. Величина этого смещения (плечо поперечной проекции гидродинамической си­лы) тем больше, чем острее угол атаки. При углах атаки, близких к 90°, плечо стремится к нулю, т. е. точка приложения приближа­ется к центру площади; для надводной части - к центру парус­ности (ЦП), для подводной - к центру площади проекции по­груженной части на ДП, называемому центром бокового сопротивления (ЦБС).

Применительно к подводной части корпуса углом атаки явля­ется угол дрейфа, а к надводной - курсовой угол кажущегося ветра.

При изучении вопросов управления судном удобнее рассматри­вать вместо сил, связанных с направлением движения, проекции их равнодействующей на судовые оси - продольную X и попе­речную Y .

Рис. 4.1. Гидродинамическая сила R , приложенная к корпусу судна и ее проекции на оси X и Y

На рис. 4.1 в качестве примера показаны гидродинамическая сила R и ее составляющие (подъемная R под и лобового сопротивле­ния Я лоб ), а также проекции силы R на судовые оси (поперечная R y и продольная R x ). Очевидно, что поперечная гидродинамическая сила R y создает относительно вертикальной оси, проходящей через центр тяжести (ЦТ) судна, момент R y l R .

Отметим, что ЦБС располагается всегда вблизи ЦТ, а положе­ние ЦП зависит от архитектуры надводной части и от дифферента судна.

Силы и моменты, действующие на судно в процессе управ­ления.

Все силы, действующие на судно по принятой в настоящее время классификации, разделяются на три группы: движущие, внешние и реактивные.

К движущим относят силы, создаваемые средствами управле­ния с целью придания судну требуемого линейного и углового движения. К таким силам относятся упор гребного винта, боковая сила руля, силы, создаваемые САУ, и т. п.

К внешним относятся силы давления ветра, волнения моря, и течения. Эти силы, обусловленные внешними источниками энергии, в большинстве случаев создают помехи при маневри­ровании.

К реактивным относятся силы и моменты, возникающие в результате движения судна под действием движущих и внеш­них сил. Реактивные силы зависят от линейных и угловых скоростей.

По своей природе реактивные силы и моменты разделяются на инерционные и неинерционные.

Инерционные силы и моменты обусловлены инертностью судна и присоединенных масс жидкости. Эти силы возникают только при наличии ускорений - линейного, углового, центростреми­тельного.

Инерционная сила всегда направлена в сторону, противополож­ную ускорению. При равномерном прямолинейном движении суд­на инерционные силы не возникают.

Неинерционные силы и их моменты обусловлены вязкостью за­бортной воды, следовательно, являются гидродинамическими си­лами и моментами. При рассмотрении задач управляемости обыч­но используется связанная с судном подвижная система координат с началом в ц. т. Положительное направление осей: X - в нос; Y - в сторону правого борта; Z - вниз. Положительный отсчет углов принимается по часовой стрел­ке, однако, с оговорками в отношении угла перекладки руля, угла дрейфа и курсового угла ветра.

За положительное направление перекладки руля принимают пе­рекладку, вызывающую циркуляцию по часовой стрелке, т. е. пе­рекладку на правый борт (перо руля при этом разворачивается против часовой стрелки).

За положительный угол дрейфа принимается такой, при кото­ром поток воды набегает со стороны левого борта и, следователь­но, создает положительную поперечную гидродинамическую силу на корпусе. Такой угол дрейфа возникает на правой циркуляции судна.

Инерционные силы и моменты

При прямолинейном и криволинейном движении судна или со­става к силам упора движителей, сопротивления движению и силам, возникающим на корпусе и руле, может при­соединиться еще и сила инерции.

В соответствии с законами механики (законами И. Ньютона) инерционные силы могут быть определены так:

сила инерции при поступательном движении

(4.1)

центробежная составляющая силы инерции при установившем­ся криволинейном движении

(4.2)

В последних формулах:

-масса тела (судна или состава), кг;

- ускорение, м/сек 2 ;

- радиус кривизны траектории движения, м;

- скорость движения тела, м/сек.

Уравнение (4.2) может быть переписано еще и так:

, (4.3)

где -угловая скорость вращения судна, рад/сек.

При неустановившемся движении судна на него со стороны жидкости будут действовать следующие инерционные силы, отнесенные к осям X и Y .

(4,4)

а в случае неустановившегося вращательного движения - еще и инерционный момент относительно вертикальной оси, проходящей через ц. т.,

(4.5)

В формулах (4,4) и (4.,5):

, - составляющие скорости движения по осям

,- присоединенные массы жидкости при движении вдоль осей ОХ и OY ;

- коэффициент присоединенного момента инерции при вращении судна около вертикальной оси (за счет присоединенной мас­сы жидкости);

-угловая скорость вращения судна относительно этой оси.

При криволинейном движении судна появится центростреми­тельное ускорение, которое вызовет появление составляющих цент­робежной силы инерции жидкости. Эти составляющие определят­ся в соответствии с выражением (4.3) так:

(4.6)

Само судно при криволинейном движении также обладает инерцией. При этом инерционный момент, действующий на судно, определится следующим образом:

(4.7)

С учетом всех составляющих инерционных сил рассмотренных выше запишем

(4.8)

Влияние руля на управляемость судна

В процессе движения судна на переднем ходу прямолинейным курсом (рис.4.2 положение ) на него будут действовать движущая сила
переднего хода и сила сопротивления воды, которая на­правлена на подводную часть кор­пуса вдоль ДП (симметрично по бор­там судна).

При перекладке руля от ДП на угол встречный поток воды соз­дает гидродинамическое давление на перо руля, которое раскладывает­ся на две составляющие; - ру­левую силу и - силу торможения.

Рассмотрим действие рулевой силы на судно. Для этого приложим в ц. т. судна две противоположно направленные силы и , равные и параллельные силе . Силы и образуют пару сил, а расстоя­ние от ц. т. судна до центра пера руля будет плечом этой пары. Образуется поворачивающий момент руля
, который вызывает вращательное движение судна.

Значения сил и моментов для изолированного ру­ля, могут быть выражены через безразмерные коэффициенты следующим образом:

(4.9)

(4.10)

(4.11)

где
- безразмерный коэффициент продольной силы на руле;
- безразмерный коэффициент поперечной силы на руле;
- безразмерный коэффициент момента на руле; - плотность воды, кг/м 3 ; - площадь пера руля, м 2 ; - скорость натекания воды на руль, м/с; - средняя ширина руля, м;
- момент на руле; - поперечная сила на руле; - продольная сила на руле.

Рулевая сила реального судна за­висит не только от площади пера руля, угла перекладки и скорости об­текания его окружающим потоком, но также и от конструктивных осо­бенностей корпуса судна, его дви­жителей и рулевого устройства.

Оптимальным утлом перекладки руля относительно диаметральной плоскости судна обычно является угол, равный 40-45°. При даль­нейшем увеличении угла перекладки возрастает сила сопротивления , которая на руле оказывает тормо­зящее воздействие и уменьшает ско­рость движения судна.

Значение плеча зависит от рас­положения ц. т. судна по длине корпуса. Чем больше расстояние от кормы судна до ц. т., тем боль­ше будет плечо. От значения , в свою очередь, зависит значение пово­рачивающего момента
. При чрез­мерно большом поворачивающем мо­менте судно будет излишне чувстви­тельно к перекладке руля и неустой­чиво на курсе.

При перекладке руля увеличива­ется сопротивление воды и умень­шается скорость движения, поэтому на прямолинейных курсах следует избегать частых перекладок руля. При движении по прямой и углах перекладки руля на 5° падение ско­рости составляет около 2%, на 10°-3%. Опытные рулевые при дви­жении постоянным курсом в среднем отклоняют руль не более чем на 0,8-1,0°, и потери скорости при этом не превышают 0,5-0,6%.

Перекладка руля вызывает смеще­ние (дрейф) судна в сторону, про­тивоположную повороту из-за силы , при этом наибольшая величина дрейфа наблюдается в кормовой ча­сти судна. Это обстоятельство необ­ходимо учитывать при выполнении поворотов вблизи причалов, других судов, отмелей и т. п.

Рис.4.2 Действие руля при движении судна передним ходом.

В процессе движения по криволи­нейной траектории на корпусе судна происходит перераспределение гид­родинамических сил сопротивления воды вследствие того, что струи воды набегают на наружный борт под некоторым углом к корпусу, образуя силы , которые принято называть позиционными. При этом дав­ление воды на наружный борт увеличивается, а равнодействующая позиционных сил (см. рис. 4., положение) будет направлена под углом к ДП. Ее можно раз­ложить на две сос­тавляющие: и . Точка прило­жения силы находится в центре давления (ц. д.) подводной части корпуса и смещается в сторону набегающего потока тем больше, чем больше скорость движения и угол натекания струй на корпус судна. Как показывают модельные испы­тания, она находится в носовой час­ти судна примерно на расстоянии около 1/4 длины корпуса от фор­штевня. Для анализа воздействия позиционных сил на судно приложим к его ц. т. две противоположно направленные силы и , равные и параллельные силе . Силы и с плечом образуют пару сил, поворачивающий момент которой
называется позицион­ным моментом.

Значение позиционного момента зависит от формы и габаритов кор­пуса судна, скорости его движения и угловой скорости поворота. Сле­довательно, при движении судна по криволинейной траектории на него будет действовать суммарный поворачивающий момент, равный моменту руля и позицион­ному моменту, т. е.
.

Значения гидродинамических сил и моментов, выраженных через безразмерные коэффициенты приведены ниже.

(4.12)

(4.13)

(4.14)

где
- безразмерный коэффициент продольной гидродинамической силы на корпусе судна;
- безразмерный коэффициент поперечной силы на корпусе судна;
- безразмерный коэффициент гидродинамического момента на корпусе судна; - плотность воды, кг/м 3 ; - погруженная площадь диаметрального батокса, м 2 ; - скорость натекания воды на корпус судна, м/с; - длина судна, м;
- гидродинамический момент на корпусе судна; - составляющая гидродинамической силы на корпусе судна; - продольная составляющая гидродинамической силы на корпусе судна.

После преодоления сил инерции прямолинейного движения судно на­чинает двигаться по криволиней­ной траектории. В это время на суд­но, как на всякое тело, движуще­еся по кривой, будет действовать центробежная сила (см. рис4.2, положение
), приложенная в ц. т. судна и направленная в сто­рону, противоположную повороту. Величина центробежной силы прямо пропорциональна массе судна
, квадрату скорости поступательного движения и обратно пропорциональ­на радиусу кривизны траектории т. е.
.

Вращательное движение судна вы­зывает появление статических сил сопротивления воды и (см. рис. 4, положение IV ), вследствие чего образуется поворачивающий момент
, который носит название демпфирующего момента. Он направлен в сторону, противо­положную направлению вращения судна, и препятствует повороту. Наи­большего значения демпфирующий момент достигает при развороте суд­на на одном месте, чем и объяс­няется длительное время разворота.

Таким образом, при движении суд­на передним ходом с отклонен­ным рулем по криволинейной траек­тории на него будет действовать общий поворачивающий

момент, равный алгебраической сумме моментов руля, позиционного и демпфирующего, т. е.

Все силы (нагрузки), действующие на корпус судна, можно разделить на две категории:

-Постоянные , действующие в течение всего периода эксплуатации.

-Случайные , действующие в течение какого-либо промежутка времени или периодически.

По характеру воздействия на корпус постоянные или случайные силы могут быть статическими илидинамическими.

Также на судно действуют нагрузки (во время эксплуатации):

Силы тяжести – Силы (постоянные), действующие на судно всё время. К ним относятся силы тяжести корпуса, механизмов, грузов, запасов.

Силы гидростатического давления (силы поддерживания) – постоянные силы, уравновешивающие силы тяжести, величина сил поддерживания зависит от осадки судна.

Силы сопротивления воды (при движении судна) – постоянные силы, величина которых зависит от скорости и осадки судна.

Инерционные силы – случайные силы, возникновение которых зависит от эксплуатационных условий, например, при качке.

Реакция кильблоков (при постановке судна в док) – случайные силы, величина которых зависит от распределения нагрузки по длине судна в момент докования и количества кильблоков под днищем судна.

Прочие эксплуатационные силы – случайные, преимущественно динамического характера: удары о пирс при швартове, посадка на мель, удары волн о корпус, заливание палубы водой при шторме.

Для противодействия вышеперечисленным нагрузкам и предотвращения остаточных деформаций корпус судна должен обладать общей продольной, поперечной и местной прочностью.

А) Общая продольная прочность:

При плавании судна в спокойной воде на его корпус действуют силы тяжести и силы поддерживания. Эти нагрузки условно приводятся к плоской системе сил, приложенных к вертикальной плоскости, проходящей вдоль судна через середину его ширины. Силы тяжести по длине судна распределены неравномерно, в зависимости от типа судна, расположении МО по длине судна, количества груза в трюмах, количества и распределения судовых запасов, балласта. Распределение сил поддерживания по длине судна пропорционально подводному объёму корпуса, т.е наибольшее гидростатическое давление воды будет действовать по средней части длины корпуса с плавным уменьшением к оконечностям.

Чтобы рассчитать общую продольную прочность корпуса судна, его делят на 20 теоретических отсеков. Посчитывают величину сил тяжести корпуса, механизмов, грузов, оборудования, приходящуюся на каждый теоретический отсек, а затем в принятом масштабе строят кривую сил тяжести. Полученная ступенчатая кривая наглядно показывает величину си тяжести в каждом теоретическом отсеке и характер распределения этих сил по длине судна. Вычисляют также величину сил поддержания, приходящуюся на каждый теоретический отсек и строят её кривую. Эта кривая может быть ступенчатой, что удобней для её сравнения с кривой сил тяжести, или плавной, так как изменение подводного объёма по длине происходит плавно. Кривые строят в одном масштабе, что даёт возможность сложить их. Получается кривая нагрузки. Иногда может иметь место избыток сил поддержания, тогда распределение нагрузки вызовет перегиб судна, при котором в палубевозникнут напряжения растяжения или напряжения сжатия. Если нагрузка на судно будет распределена по-иному, т.е в средней части судна будет избыток сил тяжести, а в конечностях - сил поддержания, то судно будет испытывать прогиб, и напряжения в палубе изменят знак.

Б) Местная прочность:

Местная прочность – способность отдельных районов или мест корпуса выдерживать действующие на них нагрузки. При рассмотрении местной прочности корпус судна разбивают на ряд конструктивных элементов: перекрытия, шпангоутные рамки, баки, пластины.

- Перекрытия – система пересекающихся продольных и поперечных балок набора, соединенных обшивкой и опирающихся на жёсткий опорный контур (борта, переборки, палубы).

Различают перекрытия: днищевые, бортовые, палубные, переборки. Балки, входящие в состав перекрытия, делятся на балки главного направления – часто расставленные балки одного направления, и перекрёстные связи – мощные балки, пересекающие балки главного направления и поддерживающие их.

- Шпангоутная рамка – образуется поперечными балками днища, борта и палубы, лежащими в одной вертикальной поперечной плоскости. Методами строительной механики корабля определяют деформации напряжения в балках и узлах рамки.

- Пластина – это часть обшивки, которая находится между балками и опирается на них. Пластины корпуса непосредственно воспринимаю нагрузку, и передают её балкам судового набора. Определённая часть двух соседних пластин входит в состав балки набора как присоединенный поясок. Таким образом, балка набора состоит из вертикальной стенки, свободного пояска и присоединённого пояска, т.е имеет вид двутавра.

20. Основные элементы корпуса судна : Нос(передняя часть или носовая оконечность), Корма (задняя часть или кормовая оконечность), Днище, Второе дно (на крупных судах), Междудонное пространство (между днищем и настилом второго дна), Борта (правый и левый), Палуба (закрывает корпус сверху), палубы: верхняя – главная, а также вторая, третья и т.п.(счёт палуб идёт сверху вниз) , Твиндек – пространство между палубами, внутри корпус судна разделён поперечными продольными переборками на ряд Отсеков, Форпик – первый носовой отсек, Ахтерпик – последний кормовой отсек, Надстройки и Рубки располагаются на палубе (могут быть одно- и многоярусными) , Бак – носовая надстройка (хранятся концы, танки с топливом и пресной водой, балласт), Ют – кормовая надстройка, Средняя надстройка – располагается между баком и ютом, Элементы судовых устройств располагаются на главной палубе и на палубах бака и юта. Элементы судовых устройств – комплекс конструкций, изделий и механизмов, который обеспечивает нормальную, безопасную эксплуатацию судна. Морские суда обычно имеют рулевое, якорное, швартовное, буксирное, спасательное, мачтовое, грузовое, тентовое и леерное устройства.

21/ 22/ 23- основные системы каркаса корпуса судна :

  1. поперечная система набора корпуса: при этой системе балки главного направления во всех перекрытиях (бимсы – в палубных, шпангоуты – в бортовых, флоры – в днищевых расположены поперёк судна. Расстояние между ними определяется по правилам Регистра и в зависимости от длины судна колеблется в пределах 500-800 мм. Поперечная система набора выгодна на ледоколах и судах ледового плавания, т.к. хорошо обеспечивает устойчивость листов днища при поперечном сжатии судна льдами. Преимущества: простота конструкции, лёгкость стыковки секции на стапеле, без большого числа продольных связей легче обеспечить непроницаемость поперечных переборок. Недостаток: большое число гибочных работ.
  2. Продольная система набора корпуса судна: при данной системе набора во всех перекрытиях в средней части длины корпуса балки главного направления расположены вдоль судна. Оконечности судна при этом набираются по поперечной системе, т.к. в оконечностях продольная система неэффективна. Применение продольной системы в средней части длины судна позволяет обеспечить высокую продольную прочность. Поэтому данная система применяется на длинных судах, испытывающих действие большого изгибающего момента.Большое число продольных рёбер жёсткости обеспечивает хорошую устойчивость продольных рёбер палубы и днища при продольных сжимающих нагрузках, что позволяет применять листы из высокопрочной низколегированной стали меньшей толщины. В результате увеличивает грузоподъёмность судна. Малое число гибочных работ. Недостатки: установка высокого рамного набора, загромождающего трюмы, большое количество отверстий в поперечном наборе для прохода продольных рёбер жёсткости, сложность стыковки секций на стапеле.
  3. Комбинированная система набора корпуса: при диной системе набора палубные и днищевые перекрытия в средней части длины корпуса набираются по продольной системе набора, а бортовые перекрытия в средней части и все перекрытия в оконечностях судна – по поперечной системе набора. Такое комбинирование систем набора перекрытий позволяет более рационально решить вопросы общей продольной и местной прочности корпуса, а также обеспечить хорошую устойчивость листов палубы и днища при их сжатии. Комбинированная система применяется на крупнотоннажных сухогрузных судах и низкобортных танкерах. Применение данной системы приводит к увеличению грузоподъёмности судна, т.к. из-за рационального размещения балок набора в поперечном сечении корпуса можно снизить толщину листового и профильного проката.
  4. стр. 45, 46, 47 – рисунки.

Конструкция днища :

  1. Днище судна состоит из днищевых перекрытий, которые представляют собой части днища, заключённые между бортами и переборками. В процессе эксплуатации судна днищевые перекрытия испытывают следующие нагрузки: гидростатическое давление воды, равномерно распределённое или сосредоточенное давление груза в трюме, сосредоточенные и вибрационные нагрузки в МО, гидродинамическое воздействие волн в оконечностях судна, усилия от общего продольного изгиба, реакции кильблоков при постановке судна в док, гидростатическое давление испытательного набора.
  2. Днищевое перекрытие без второго дна, набранное по поперечной системе набора. Днищевой набор состоит из балок таврового поперечного сечения. Балки имеют вертикальную стенку и горизонтальный поясок. В диаметральной плоскости вдоль всего судна установлен вертикальный киль. Параллельно ему на расстоянии 1100-2200 мм. Расположены днищевые стрингеры. Поперёк судна в каждом шпангоуте установлены сплошные флоры. Во флорах и стрингерах выполняют круглые или овальные вырезы для уменьшения массы перекрытия.Между вырезами на стенки флоров приваривают рёбра жёсткости. В стенках поперечного и продольного набора у днища вырезают голубницы- отверстия для протока воды и прохода выступающих валиков стальных швов. Такое днище используется на небольших сухогрузных судах.
  3. днищевое перекрытие без второго дна, набранное по продольной системе набора. Такая конструкция обычно применяется в танка нефтеналивных судов. Характерная особенность – наличие большого количества продольных днищевых рёбер жёсткости. В нижней части продольных рёбер жесткости делают прорези в виде гребёнки, что улучшает условия приварки балок к днищу и обеспечивает сток нефтепродуктов к какому-либо борту. В районе скуловой части днищевые продольные ребра жесткости на длинных судах пропускают через поперечные переборки, не разрезая. В диаметральной плоскости устанавливают высокий вертикальный киль.
  4. днищевое перекрытие со вторым дном, набранное по поперечной системе. Настил второго дна обеспечивает общую продольную прочность корпуса, удобство укладки груза и обслуживания трюма, препятствует проникновению воны внутрь судна при получении пробоины в днище. Образовавшееся междудонное пространство служит для хранения жидких судовых запасов и приёма балласта. В диаметральной плоскости установлен вертикальный киль. Параллельно килю с каждого борта идут днищевые стрингеры. Поперёк судна устанавливают сплошные, непроницаемые, бракетные или облегчённые флоры. Непроницаемые флоры выгораживают междудонные отсеки. На некоторых судах настил второго дна у борта может подгибаться наверх или подходить к борту горизонтально.
  5. днищевое перекрытие со вторым дном, набранное по продольной системе набора. Применяется на крупных сухогрузных судах, в последнее время и на танкерах. В середине ширины судна устанавливают вертикальный киль, днидщевые стрингеры в данном случае могут быть поставлены несколько реже, чем при поперечной системе набора, но количество их с каждого борта также зависит от ширины судна и колеблется от одного до трёх. По днищу и под настилом второго днарасполагают днищевые продольные рёбра жёсткости второго дна. По настилом второго дна ставят сплошные и водонепроницаемы флоры.

Рис. Стр. 49-52

Конструкция борта : борт судна состоит из бортовых перекрытий, которые представляют собой участки борта, заключённые между поперечными переборками, палубой и днищем.

1. бортовое перекрытие набранное по поперечной системе набора. (сухогрузные суда, ледоколы и низкогабаритные танкеры. Бортовая обшивка поддерживает обыкновенными шпангоутами.

2. днищевое перекрытие со вторым дном, набранное по продольной системе набора. Такая конструкция применяется на крупнотоннажных танкерах и нефтерудовозах.

При прямолинейном равномерном движении на судно действуют две равные по величине и противоположно направленные силы: сила упора движителей (движущая сила) F Д и сила сопротивления R .

F Д = R; a= 0

При неустановившемся прямолинейном движении к этим двум силам добавляется сила инерции, компенсирующая алгебраическую разность этих сил.

При ускоренном движении судна, когда движущая сила F Д больше силы R , сила инерции выступает в роли сопротивления, а при замедленном движении, когда движущая сила F Д меньше силы сопротивления R , - в роли движущей силы.

F Д > R ; F Д < R; a 0 .

6.1.2. Характеристики сил, действующих на судно при криволинейном движении.

Криволинейное движение судна осуществляется с помощью соответствующей перекладки руля или поворотной накладки. При этом на руле возникает гидродинамическая сила руля Р р (рис. 6.1), которую можно разложить на продольную Р х , направленную параллельно диаметральной плоскости, и боковую (рулевую) Р у – перпендикулярную ей. Первая увеличивает силу сопротивления и тем самым уменьшает скорость движения судна, вторая – вызывает боковое перемещение судна в сторону своего действия и, кроме того, образует момент относительно центра тяжести (ЦТ), который осуществляет первоначальный поворот судна с угловой скоростью ω 1.

М р = Р у L к (6.1)

Р х = Р р · Cosα

Р у = Р р · Sinα

где Р у – составляющая гидродинамической силы руля по оси У;

L к - расстояние (плечо) от ЦТ до точки приложения силы Р р;

α – угол перекладки руля.

Наличие бокового перемещения судна вызывает отклонение его вектора скорости V от ДП на угол дрейфа β (рис.6.1).

Угол дрейфа при криволинейном движении (β) есть угол между ДП судна и вектором линейной скорости его в данной точке криволинейного движения.

Боковое перемещение судна и поворот нарушают симметричность обтекания подводной части корпуса судна, и на нем возникает гидродинамическая сила R Г , направленная под определенным углом к диаметральной плоскости судна. Эту силу можно разложить на две составляющие: боковую R УГ (рис. 6.1) и

продольную R ХГ . Сила R УГ направлена в сторону, обратную силе Р У , и, кроме того, создает вращающий момент относительно центра тяжести судна М Г.

Рис.6.1 Силы, действующей на судно при криволинейном движении.

М Г = R УГ L R (6.2)

R ХГ = R Г · Cosδ

R УГ = R Г · Sinδ

где R УГ – составляющая гидродинамической силы по оси У;

L R – расстояние (плечо) от центра приложения гидродинамических сил (ЦГ) до ЦТ.

δ - угол между ДП и направлением действия гидродинамической силы Р Г.

Момент М Г также осуществляет поворот судна с угловой скоростью ω 2. Моменты М Р и М Г в данном случае совпадают и создают суммарный поворачивающий момент М П, который будет осуществлять поворот судна с угловой скорость ω.

М П является алгебраической суммой моментов М Р и М Г

М П = М Р + М Г (6.3)

Составляющая R Х представляет собой силу, препятствующую движению судна.

По истечении некоторого времени после перекладки руля судно опишет криволинейную траекторию. При этом, как и у любого твердого тела, у него возникнут два ускорения: нормальное а п (центростремительное), направленное к центру кривизны траектории, и касательное а τ , совпадающее с линией вектора скорости V . При этом на судно будут действовать соответствующие силы инерции. Сила инерции I Ц (рис. 6.1), вызванная появлением нормального ускорения, будет пропорциональна этому ускорению и направлена в противоположную сторону. Она носит название центробежной силы инерции. Сила инерции I τ , вызванная касательным ускорением, направлена в сторону, обратную этому ускорению.

Центробежная сила инерции I Ц будет действовать все время, пока судно движется по кривой, а сила I τ – только при изменении скорости движения (на установившейся циркуляции, когда скорость движения постоянна этой силы не будет).

Прочность судна - способность его корпуса не разрушаться и не изменять своей формы под действием постоянных и временных сил

Силы, действующие на корпус плавающего судна

На корпус судна действуют временные и постоянные силы. К временным необходимо отнести силы, возникающие во время качки судна на взволнованной поверхности воды: силы инерции масс судна и силы сопротивления воды. К постоянным относятся статические силы, вес судна и давление воды на погруженную часть корпуса - силы поддержания. Силы, действующие на судно, плавающее на тихой воде, несмотря на равнодействующие их равенство, по длине корпуса распределяются неравномерно. Силы поддержания, распределяются по длине соответственно погруженному в воду объему корпуса и характеризуются формой строевой по шпангоутам. Силы же веса распределяются по длине корпуса в зависимости от расположения его элементов, таких, как мачты, переборки, механизмы, надстройки, установки, грузы и т. п. Получается так, что на одном участке по длине корпуса силы поддержания преобладают над силами веса, а на другом - наоборот.

Изгиб корпуса судна, вызванный неравномерным распределением действующих на него сил. 1 - кривая сил веса; 2 - кривая сил поддержания.
От неравномерного распределения по длине корпуса сил веса и сил поддержания возникает общий продольный изгиб корпуса судна. Максимального значения эти силы достигают тогда, когда судно идет курсом, перпендикулярным направлению волны, длина которой равна длине судна. При прохождении вершины волны у миделя, в средней части корпуса образуются избыточные силы поддержания с недостатком их в оконечностях.

От неравномерного распределения сил поддержания в этом случае получается перегиб корпуса (а). Через короткий промежуток времени судно переходит на подошву волны, при этом избыток сил поддержания перемещается к оконечностям, отчего возникает прогиб корпуса (б). Вследствие качки судна, возникшей на волнении, на корпус действуют силы инерции, оказывающие на него дополнительное воздействие, а во время плавания с большой скоростью против крупной встречной волны при ударе днищевой частью носовой оконечности о воду (явление слеминга) возникают дополнительно ударные или динамические нагрузки.

Понятие прочности судна

Прочностью судна называется способность его корпуса не изменять своей формы и не разрушаться под действием временных и постоянных сил. Различают общую и местную прочность судна.

Общей продольной прочностью корпуса судна называется его способность выдерживать действие внешних сил, приложенных по длине.

Общая прочность судна обеспечивается водонепроницаемой оболочкой, которой служит обшивка и верхняя палуба, настил других палуб, продольные переборки с подкрепляющими их конструкциями и всеми конструктивными связями, имеющими длину больше высоты борта.

Местной прочностью корпуса называется способность его отдельных конструкций противостоять дополнительному воздействию сил: главным образом давлению забортной воды и сосредоточенным нагрузкам.

Для обеспечения местной прочности отдельных конструкций предусматривают их специальное местное подкрепление.

Кроме прочности, конструкции судна должны обладать также устойчивостью, т. е. они не должны изменять своей формы под действием сжимающих усилий (например, не должно происходить выпучивания палуб, изгиба переборок и т. п.). Для обеспечения необходимой устойчивости конструкций на них устанавливают дополнительные ребра жесткости или другие какие-либо подкрепления.

Расчет общей прочности судна сводится к определению размеров его прочных связей и вычислению внутренних напряжений, возникающих в них под действием приложенных сил. Если возникающие напряжения не превосходят допускаемых для данного материала, то прочность судна обеспечена; если же -наоборот, то следует увеличить размеры связей и вновь произвести расчет прочности. Для такого расчета необходимо знать момент сопротивления поперечного сечения посредине длины корпуса судна.

В строительной механике корпус принимается как пустотелая составная балка сложной конструкции. Расчет такой балки сводится к вычислению момента сопротивления так называемого эквивалентного бруса, представляющего собой условную составную балку, отдельные части которой имеют площадь и расположение по высоте, аналогичные соответствующим элементам прочных связей корпуса, участвующим в обеспечении продольной прочности судна. Приближенно наименьшее значение момента сопротивления определяется по формуле

где η – коэффициент утилизации площади сечений, равный 0,5- 0,55;

F – площадь сечения продольных связей;

Н – высота борта судна. Внутренние напряжения бвн при изгибе балки, как известно, находят по формуле

где М – наибольший изгибающий момент по длине судна. Изгибающий момент зависит от водоизмещения и длины судна и выражается зависимостью

где k – коэффициент пропорциональности, изменяющийся в пределах от 20 до 40 в зависимости от типа судна.

Все силы, действующие на судно, разделяются на три группы:

Движущие;

Внешние;

Реактивные.

К движущим силам относятся силы, создаваемые средствами управления: тяга винта, боковая сила руля, силы, создаваемые средствами активного управления.

К внешним силам относятся силы давления ветра, волнения моря, давления течения.

К реактивным силам относятся силы, возникающие в результате движения судна под действием движущих и внешних сил. Они разделяются на инерционные - обусловленные инертностью судна и присоединенных масс воды и возникающие только при наличии ускорений. Направление действия инерционных сил всегда противоположно действующему ускорению. Неинерционные силы обусловлены вязкостью воды и воздуха и являются гидродинамическими и аэродинамическими силами.

ТЯГА ВИНТА И СОПРОТИВЛЕНИЕ ДВИЖЕНИЮ СУДНА.

Чтобы судно двигалось с определенной скоростью, к нему необходимо приложить движущую силу, преодолевающую сопротивление движению. Полезная мощность, необходимая для преодоления сопротивления, определяется формулой

где R - сила сопротивления; V - скорость движения.

Движущая сила создается работающим винтом, который, как и всякий механизм, часть энергии тратит непроизводительно.

Отношение полезной мощности к затрачиваемой называется пропульсивным коэффициентом комплекса корпус - движитель. Пропульсивный коэффициент характеризует потребность судна в энергии, необходимой для поддержания заданной скорости движения.

Максимальная тяга винта развивается в швартовном режиме (в случае, когда судно стоит на швартовых, а его машине дали полный передний ход). Эта сила примерно на 10 % больше тяги винта в режиме полного хода. Сила тяги винта при работе на задний ход для различных судов составляет примерно 70-80 % от тяги винта в режиме полного хода.

КАЧКА.

Качкой называются колебательные движения, которые судно совершает около положения его равновесия.

Колебания называются свободными (на тихой воде), если они совершаются судном после прекращения действия сил, вызвавших эти колебания (шквал ветра, рывок буксирного троса). Из-за наличия сил сопротивления (сопротивления воздуха, трения воды) свободные колебания постепенно затухают и прекращаются. Колебания называются вынужденными, если они совершаются под действием периодических возмущающих сил (набегающие волны).

Качка характеризуется следующими параметрами (рис. 179):

амплитудой θ - наибольшим отклонением от положения равновесия;

размахом - суммой двух последовательных амплитуд;

периодомТ - временем совершения двух полных размахов;

ускорением.

Качка затрудняет эксплуатацию машин, механизмов и приборов из-за воздействия возникающих сил инерции, создает дополнительные нагрузки на прочные связи корпуса судна, оказывает вредное физическое воздействие на людей.

Рис. 179. .Параметры качки: θ 1 и θ 2 амплитуды; θ 1 + θ 2 размах.

Различают бортовую, килевую и вертикальную качку. При бортовой качке колебания совершаются вокруг продольной оси, проходящей через центр тяжести судна, при килевой - вокруг поперечной. Бортовая качка при малом периоде и больших амплитудах становится порывистой, что опасно для механизмов и тяжело переносится людьми.

Период свободных колебаний судна на тихой воде можно определить по формуле Т = c(B/√h, где В - ширина судна, м; h - поперечная метацентрическая высота, м; с - коэффициент, равный для грузовых судов 0,78 - 0,81.

Из формулы видно, что с увеличением метацентрической высоты уменьшается период качки. При проектировании судна стремятся достигнуть достаточной остойчивости при умеренной плавности качки. При плавании на волнении судоводитель должен знать период собственных колебаний судна и период волны (время между набеганием на судно двух соседних гребней). Если период собственных колебаний судна равен или близок периоду волны, то наступает явление резонанса, которое может привести к опрокидыванию судна.

При килевой качке возможно либо заливание палубы, либо при оголении носа или кормы их удары о воду (слеминг). Кроме того, ускорения, возникающие при килевой качке, значительно больше, чем при бортовой. Это обстоятельство должно учитываться при выборе механизмов, устанавливаемых в носу или в корме.

Вертикальная качка вызывается изменением сил поддержания при прохождении волны под судном. Период вертикальной качки равен периоду волны.

Для предотвращения нежелательных последствий от действия качки судостроители применяют средства, способствующие если не полному прекращению качки, то по крайней мере умерению ее размахов. Особенно остро стоит эта проблема для пассажирских судов.

Для умерения килевой качки и заливания палубы водой у ряда современных судов делают значительный подъем палубы в носу и в корме (седловатость), увеличивают развал носовых шпангоутов, проектируют суда с баком и ютом. При этом в носу на баке устанавливают водоотбойные козырьки.

Для умерения бортовой качки применяют пассивные неуправляемые или активные управляемые успокоители качки.

К пассивным успокоителям относят скуловые кили, представляющие собой стальные пластины, устанавливаемые на протяжении 30 - 50 % длины судна в районе скулы вдоль линии тока воды (рис. 180). Они просты по устройству, уменьшают амплитуду качки на 15 - 20%, но оказывают значительное дополнительное сопротивление воды движению судна, уменьшая скорость хода на 2-3 %.

Рис. 181. Бортовые пассивные цистерны и положение в них жидкости при качке судна в резонанс с волной.

Эти цистерны эффективны при режимах качки с большим периодом. Во всех прочих случаях они не умеряют, а даже увеличивают ее амплитуду.

В активных цистернах (рис. 182) вода перекачивается специальными насосами. Однако установка насоса и автоматического устройства, управляющего работой насоса, значительно усложняет и удорожает конструкцию.

Понравилась статья? Поделиться с друзьями: